Research Article

For reprint orders, please contact: reprints@futuremedicine.com

Epigenomics

Pilot study: limited evidence that common levels of prenatal alcohol exposure change the biology of the placenta; more evidence in male offspring but we need to look at many more samples (but need \$\$)

Epigenetic marks combine to open and close foliogene gene regulatory regions (on-off switches)

Epigenetics, development & Waddington's epigenetic landscape

Waddington's 'Epigenetic Landscape'

ch Childrens
1 Institute

ids. Healthier Future.

ier Future.

Epigenetics: mediator of early life environment on risk for chronic disease

Epigenetics: mediator of early life environment on risk for chronic disease

Rationale

- Epigenetic change as a mediator of prenatal alcohol exposure (PAE) on adverse childhood outcomes
- Taking the first step
 - Previous studies of chronic alcohol exposure inc. FASD
 - Very few studies of dosage & timing of PAE

Hypothesis and Aim

- Hypothesis: epigenetic changes, in particular in the placenta, may mediate the effects of PAE on children's health.
- Aim: To examine the relationship between PAE patterns, based on dose & timing, and placental global DNA methylation.

- Alu interspersed repeat (canary in a coalmine)
- 11% genome
- Cancer
- Prenatal & postnatal toxicants

AQUA

Asking questions about alcohol in pregnancy to determine infant health outcomes

Objectives

- Examine the effects of dose and timing of alcohol in pregnancy on specific physical and neurobehavioural outcomes in infants and young children
- Take into account important contextual factors that may help understand the heterogeneous
 nature of these effects; with special investigations into epigenetic and genetic influences

Measuring global DNA methylation

- Placenta, n=187
- ≥3 tech reps

Healthier Kids. Healthier Future.

Defined common patterns of alcohol exposure in 3 tiers

Tier 1

Abstainers

Any alcohol in pregnancy

Statistical model

Prenatal Alcohol Exposure (PAE) groups

Maternal covariates:

Pre-pregnancy BMI

Age

Education

Household income per year

Presence of gestational diabetes

Smoking

Ethnicity

Healthy eating pattern scores

Folate intake

Partner's alcohol consumption

Mental and coping scores (AQoL)

Weight gain during pregnancy*

Infant covariates:

Sex

Gestational age

Birth weight

Batch effect*

(two SpectroCHIPs were used)

Global (Alu) DNA methylation

Healthier Kids. Healthier Future.

Univariate model

Tier 1 31 ab-

Any alcohol in pregnancy; n=156; (1.3%, p=0.004)

Healthier Kids. Healthier Future.

Univariate model

Tier 1	31 ab- stainers	Any alcohol in pregnancy; n=156; (1.3%, p=0.004)				
Tier2	31 ab- stainers	Any level of alcohol in T1 only; n=77; (1.3%, p=0.009)	Any level of alcohol throughout pregnancy; n=79; (1.3%, 0.007)			

Univariate model

Tier 1	31 ab- stainers	Any alcohol in pregnancy; n=156; (1.3%, p=0.004)					
Tier2	31 ab- stainers	Any level of alcohol in T1 only; n=77; (1.3%, p=0.009)			Any level of alcohol throughout pregnancy; n=79; (1.3%, 0.007)		
Tier 3	31 ab- stainers	Low; n=30; (0.6%, 0.3)	Modhigh; n=25; (1.6%, 0.009)	Binge; n=22; (1.8%, 0.005)	Low in T1, low- mod. in T2/T3; n=15; (1.3%, 0.08)	Modhigh in T1, low-high in T2/T3; n=28; (1.5%, 0.012)	Binge pre- aware, low-mod in T2/T3; n=36; (1.2%, 0.038)

Multivariate model

Adjusted for maternal weight gain during pregnancy, SpectroCHIP batch.

Tier 1	31 ab- stainers	Any alcohol in pregnancy; n=156; (0.6%, p=0.108)					
Tier2	31 ab- stainers	Any level of alcohol in T1 only; n=77; (0.6%, p=0.158)			Any level of alcohol throughout pregnancy; n=79; (0.7%, 0.117)		
Tier 3	31 ab- stainers	Low; n=30; (0.3%, 0.619)	Modhigh; n=25; (0.7%, 0.19)	Binge; n=22; (1.0%, 0.074)	Low in T1, low- mod. in T2/T3; n=15; (0.8%, 0.211)	Modhigh in T1, low-high in T2/T3; n=28; (0.90%, 0.084)	Binge pre- aware, low-mod in T2/T3; n=36; 0.50%, 0.34)

Multivariate model, males only

Adjusted for maternal weight gain during pregnancy, technical variable (batch effect).

Tier	14 ab- stainers	Any alcohol in pregnancy; n=75; (1.0%, p=0.058)				
Tie	2 14 ab- stainers	Any level of alcohol in T1 only; n=33; (0.5%, p=0.342)	Any level of alcohol throughout pregnancy; n=42; (1.5%, 0.01)			

Conclusions

Pilot study: limited evidence that common levels of prenatal alcohol exposure change the biology of the placenta; more evidence in male offspring but we need to look at many more samples (but need \$\$)

And need to consider <u>all</u> possible confounders, modifiers etc

Discussion

- Similar null findings to previous study
 - Wilhelm-Benartzi et al Environ. Health Perspect. 120(2), 296–302 (2012).
- Similar effect sizes to other environmental exposures
- Consistent with previous studies of sex-specific effects in placenta
- Functional consequences?

Future work

- Repeat in larger study, n>2000
- Epigenome-wide analysis

AQUA

Chief Investigators

Prof Jane Halliday

Dr Colleen O'Leary

Prof Della Forster

A/Prof Susan Donath

A/Prof Peter Anderson

Dr Sharon Lewis

Prof Elizabeth Elliott

Dr Cate Nagle

A/Prof Jeff Craig

Evi Muggli

Associate Investigators Hong Wu (SS)

Dr Sue White

Prof Tony Pennington

Dr Justine Ellis

Dr Richard Saffery

Joyce Cleary

Project Co-ordinators

Evi Muggli

Turi Berg

Helen Curd

Anne Glynn

Jo Kennedy

Amanda Springer (-2012)

Students

Mah Linh Ngyuen (Hon)

Michelle Livock (PhD)

Tara Sudarmana (SS)

Hannah Leslie (MGC, 2014)

Wendy Parmeh (MPH 2014)

Leah Marino (HIM, 2013)

Taotao Zhu (HIM, 2012)

Julie Price (HIM, 2011)

Statistical support

Francesca Orsini

Database support

Luke Stevens

Administrative support

RCH volunteers

3D imaging

Robert Reitmaier

Bert Di Paolo

Alvin Aguino

Lloyd Ellis

Recruitment and biosample collection staff (2011-2012)

Simone Hamilton

Jenny Saal

Dianna Maxwell

Clare Morrison

Veronica Abruzzo

Tina Viano

Jenni Vaughan

Janelle Blythe

Turi Berg

Michelle Burnett

Kylie Black

June Williams

Bec Heylen

Developmental assessments

Claire Corbett

TBA

JACK BROCKHOFF FOUNDATION

Acknowledgements: epi/bioinformatics: Healthier Fotore.

@AliciaOshlack

MCRI Bioinformatics:
Alicia Oshlack

@JovMaksimovic

The Jack Brockhoff Foundation

National Health and Medical Research Council

Jovana Maksimovic

Early Life
Epigenetics
Jane Loke

Mai Linh Nguyen

