
Pilot study: limited evidence that common levels of 
prenatal alcohol exposure change the biology of the 
placenta; more evidence in male offspring but we need to 
look at many more samples (but need $$)
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Epigenetics, development & Waddington’s 
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Waddington’s  ‘Epigenetic Landscape’
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Epigenetics: mediator of early life 

environment on risk for chronic disease
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Title

• Epigenetic change as a mediator of prenatal alcohol exposure 

(PAE) on adverse childhood outcomes

• Taking the first step

• Previous studies of chronic alcohol exposure inc. FASD

• Very few studies of dosage & timing of PAE

Rationale



Title

• Hypothesis: epigenetic changes, in particular in the placenta, 

may mediate the effects of PAE on children’s health. 

• Aim: To examine the relationship between PAE patterns, based 

on dose & timing, and placental global DNA methylation.

Hypothesis and Aim

• Alu interspersed repeat (canary in a coalmine)

• 11% genome

• Cancer

• Prenatal & postnatal toxicants



AQUA
Asking questions about alcohol in pregnancy to determine 

infant health outcomes

Objectives

• Examine the effects of dose and timing of alcohol in pregnancy on specific physical and 

neurobehavioural outcomes in infants and young children

• Take into account important contextual factors that may help understand the heterogeneous 

nature of these effects; with special investigations into epigenetic and genetic influences



Measuring global DNA methylation

• Placenta, n=187

• ≥3 tech reps



TitleDefined common patterns of alcohol 

exposure in 3 tiers

Tier 1 Abstainers Any alcohol in pregnancy

Tier 2 Abstainers
Any level of alcohol in 

trimester 1 only
Any level of alcohol throughout pregnancy

Tier 3 Abstainers Low 
Mod.-
high

Binge
Low in T1, 

low- mod. in 
T2/T3

Mod-high at 

T1, low-high in 
T2/T3

Binge pre-

aware, low-mod. 
in T2/T3



Statistical model

Global (Alu) DNA methylation



TitleUnivariate model

Tier 1
31 ab-

stainers
Any alcohol in pregnancy; n=156; (1.3%, p=0.004)

Tier2
31 ab-

stainers
Any level of alcohol in T1 only; n=77; 

(1.3%, p=0.009) 
Any level of alcohol throughout pregnancy; n=79; 

(1.3%, 0.007)

Tier 3

31 ab-
stainers

Low;

n=30; 

(0.6%, 
0.3)

Mod.-high; 

n=25;

(1.6%, 
0.009)

Binge; n=22;
(1.8%, 0.005)

Low in T1, low-

mod. in T2/T3;

n=15;
(1.3%, 0.08)

Mod.-high in 

T1, low-high 

in T2/T3; 

n=28;
(1.5%, 0.012)

Binge pre-

aware, low-mod 

in T2/T3; 

n=36; 
(1.2%, 0.038)
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TitleMultivariate model

Tier 1
31 ab-

stainers
Any alcohol in pregnancy; n=156; (0.6%, p=0.108)

Tier2
31 ab-

stainers
Any level of alcohol in T1 only; n=77; 

(0.6%, p=0.158)
Any level of alcohol throughout pregnancy; n=79; 

(0.7%, 0.117)

Tier 3

31 ab-
stainers

Low;

n=30; 

(0.3%, 
0.619)

Mod.-high; 

n=25;
(0.7%, 0.19)

Binge; n=22;
(1.0%, 0.074)

Low in T1, low-

mod. in T2/T3;

n=15;
(0.8%, 0.211)

Mod.-high in 

T1, low-high 

in T2/T3; 

n=28;

(0.90%, 
0.084)

Binge pre-

aware, low-mod 

in T2/T3; 

n=36; 
0.50%, 0.34)

Adjusted for  maternal weight gain during 

pregnancy, SpectroCHIP batch.    



TitleMultivariate model, males only

Tier 1
14 ab-

stainers
Any alcohol in pregnancy; n=75; (1.0%, p=0.058)

Tier2
14 ab-

stainers
Any level of alcohol in T1 only; n=33; 

(0.5%, p=0.342)
Any level of alcohol throughout pregnancy; n=42; 

(1.5%, 0.01)

Tier 3

31 ab-
stainers

Low;

n=30; 

(0.3%, 
0.619)

Mod.-high; 

n=25;
(0.7%, 0.19)

Binge; n=22;
(1.0%, 0.074)

Low in T1, low-

mod. in T2/T3;

n=15;
(0.8%, 0.211)

Mod.-high in 

T1, low-high 

in T2/T3; 

n=28;

(0.90%, 
0.084)

Binge pre-

aware, low-mod 

in T2/T3; 

n=36; 
0.50%, 0.34)

Adjusted for  maternal weight gain during 

pregnancy, technical variable (batch effect).    



Conclusions

Pilot study: limited evidence that common levels of 
prenatal alcohol exposure change the biology of the 
placenta; more evidence in male offspring but we 
need to look at many more samples (but need $$)

And need to consider all possible confounders, 
modifiers etc



Discussion

• Similar null findings to previous study

• Wilhelm-Benartzi et al Environ. Health Perspect. 120(2), 296–302 (2012).

• Similar effect sizes to other environmental exposures

• Consistent with previous studies of sex-specific effects in placenta

• Functional consequences?



Future work

• Repeat in larger study, n>2000

• Epigenome-wide analysis
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